Библиотека Способы контроля сварных конструкций

Тепловые методы неразрушающего контроля

Акустико-эмиссионный методВакуумный контрольВихретоковые методы и средства контроляКапилярный контрольКонтроль качества сварных соединенийМагнитнопорошковый методМеталлографические микроскопы и методы контрастированияМетоды контроля: радиационная дефектоскопияТепловые методы неразрушающего контроляЭлектрические методы и средства контроля

Введение

Основная задача технического контроля качества выпускаемой сварной продукции состоит в том, чтобы правильно используя эффективные методы и средства контроля, своевременно выявить(обнаружить) технологические дефекты сварки, пайки, и других процессов производста, определить причины, порождающие эти дефекты, и пути (мероприятия), обеспечивающие бездефектную сдачу готовой продукции. Методы неразрушающего контроля сварных соединений группируют по видам исходя главным образом из общности физических явлений, используемых для обнаружения дефектов и других отклонений в контролируемых объектах, недопустимых по техническим условиям на их изготовление и эксплуатацию. В неразрушающем контроле используют такие физические явления, как тепловые поля - тепловые методы неразрушающего контроля.

Общие сведения

В тепловых методах неразрушающего контроля в качестве пробной энергии используется тепловая энергия, распространяющаяся в объекте контроля. Температурное поле поверхности объекта является источником информации об особенностях процесса теплопередачи, которые, в свою очередь, зависят от наличия внутренних или наружных дефектов. Под дефектом при этом понимается наличие скрытых раковин, полостей, трещин, непроваров, инородных включений и т.д., всевозможных отклонений физических свойств объекта от нормы, наличия мест локального перегрева( охлаждения) и т.п.

Физическая сущность теплового контроля

Методы неразрушающего контроля теплового вида (ГОСТ 18353 - 79) используют при исследовании тепловых процессов в изделиях. При нарушении термодинамического равновесия объекта с окружающей средой на его поверхности возникает избыточное температурное поле, характер которого позволяет получить информацию об интересующих свойствах объектов. Методы теплового контроля основаны на взаимодействии теплового поля объекта с термодинамическими чувствительными элементами (термопарой, фотоприемником, жидкокристаллическим индикатором и т.д.), преобразовании параметров поля (интенсивности, температурного градиента, контраста, лучистости и др.) в электрический сигнал и передаче его на регистрирующий прибор.

Достоинствами теплового контроля являются: дистанционность, высокая скорость обработки информации; высокая производительность испытаний; высокое линейное разрешение : возможность контроля при одно- и двустороннем подходе к изделию; теоретическая возможность контроля любых материалов; многопараметрический характер испытаний; возможность взаимодополняющего сочетания ТНК с другими видами неразрушающего контроля; сочетаемость со стандартными системами обработки информации; возможность поточного контроля и создания автоматизированных систем контроля и управления технологическими процессами. Различают:

1)пассивный ТНК;

2) активный ТНК.

Пассивный ТНК не нуждается во внешнем источнике теплового воздействия (ИТВ) - тепловое поле в объекте контроля (ОК) возникает при его эксплуатации (изделия радиоэлектроники, энергетическое оборудование, металлургические печи и т. п.) или изготовлении (закалке, отжиге, сварке и. т. п.). Активный ТНК предполагает нагрев объекта внешними источниками энергии. В случае использования АТНК в дефектоскопии, например для обнаружения дефектов в виде нарушения сплошности (раковин, трещин, мест непроклея), информацию о дефектах несут в себе локальные неоднородности температурного поля на поверхности ОК.

Существуют следующие способы активного теплового контроля изделий:

Кратковременный локальный нагрев изделия с последующей регистрацией температуры той же(при одностороннем контроле) или при противоположной области( при двустороннем контроле). По истечении некоторого времени(чтобы изделие успело остыть) переходят к следующей точке и т.д. Так будет пройдена вся поверхность изделия, причем измеренная температура дефектных областей будет существенно отличаться от температуры бездефектных участков. С использованием сканирующей системы, состоящей из жестко закрепленных друг относительно друга источника нагрева и регистрирующего прибора(например, радиометра), перемещающихся с постоянной скоростью вдоль поверхности образца. Одновременный нагрев поверхности образца вдоль некоторой линии(при одновременном контроле) или вдоль аналогичной линии с противоположной поверхности образца( при двустороннем контроле). Подобная регистрация может быть осуществлена , например, прибором " Термопрофиль." Одновременный нагрев всей поверхности образца и последующая одновременная регистрация температурного распределения на этой же или на противоположной поверхности. Подобный способ контроля может быть осуществлен при помощи телевизора. В методе АТНК можно выделить три основных направления развития:

тепловая дефектоскопия (ТД); тепловая дефектометрия (ТД); тепловая томография (ТТ). Тепловая дефектоскопия состоит в определении факта наличия дефекта и его расположение в объекте контроля. В настоящее время это наиболее разработанное направление. Тепловая дефектометрия - направление АТНК, представляющее методы и средства количественной оценки глубины залегания дефектов, их толщины и поперечных размеров. С математической точки зрения ТД требует решения обратных теплофизических задач. Тепловая томография (ТТ) является последующим развитием ТД и состоит в послойном синтезе внутренней структуры объекта контроля на основе использования методов проективной компьютерной томографии.

Область применения активного ТНК: Авиакосмическая индустрия Ик-влагометрия:дефекты структуры копозитов,готовых панелей,клеевых соединений,защитных покрытий. Микроэлетроника Лазерный контроль пайки,сварки:ИК-томография полупроводников,БИС;дефекты теплоотводов Машиностроение Термоволновая дефектоскопия антикорозионных покрытий,тепловая толщинометрия пленок. Лазерная техника Контроль термонапряжений в лазерных кристаллах,ТФК квантронов,световой прочности элементов силовой оптики. Материаловедение Тепловая диагностика напряженного состояния объектов на основе термоэластического эффекта. Строительство Контроль теплопроводности строительных материалов, защитных ограждений,обнаружение пустот,промоин. Нефтехимия Термографический контроль уровня жидкостей в резервуарах. Энергетика Тепловизионный контроль статоров, защитных покрытий,термоизоляции Агрокомплекс Контроль ТФК продуктов, дефектоскопия деталей с.х. техники

Область применения пассивного ТНК: Область Способ,объекты контроля, выявляемые дефекты. Энергетика Тепловая диагностика турбин,дымовых труб,энергоагрегатов,контактных сетей,теплоизоляции Нефтехимия Тепловизионный контроль реакторных колонн и энергоагрегатов,обнаружение утечек из продуктопроводов. Машиностроение Контроль тепловых режимов машин, механизмов. Строительство Обнаружение утечек тепла в зданиях,тепловизионный контроль качества кровли, ограждающих конструкций. Экологический мониторинг Дистанционный контроль утечек тепла, загрязнений на водных поверхностях, выявление тепловых аномалий, обнаружение пустот, промоин. Металлургия Пирометрический контроль температуры расплавов,тепловизионная диагностика футеровки,контроль горячего проката. Транспорт Обнаружение перегрева букс, дефектов контактных сетей,изоляторов,тепловая диагностика электрооборудования подвижного состава. Авиация Световая пирометрия лопаток ТТД, аэродинамический эксперимент,контроль теплового режима бортовых РЭА. Медицина Термодиагностика сосудистых заболеваний,онкологии, кожных заболеваний.

Методы и средства теплового неразрушающего контроля.

Вибротепловизионные метод: Вибротепловизионный метод особенно перспективен для анализа изделий, работающих в условиях вибрации. В материалах с дефектами структуры под воздействием вибрации возникают температурные поля, что обусловлено рассеянием энергии колебаний на дефектах и превращением ее в теплоту за счет внутреннего перегрева в материале. В областях нарушения гомогенности структуры возникают локальные зоны перегрева объекта. На термограммах вибрирующих пластин и других объектов четко выявляются дефекты типа расслоений, несплошноностей и т.п.

Метод тепловой томографии

Тепловая томография - метод визуализации внутренних сечений объекта с помощью тепловых эффектов. Его можно реализовать импульсным облучением объекта плоским равномерным пучком излучения и последовательной регистрацией " тепловых отпечатков "дефектов или неоднородностей теплофизических параметров контролируемой структуры на противоположной стороне изделия с помощью быстродействующего тепловизора.

Методы теплового контроля на основе термофотоупругости

В современной технологии, особенно лазерной, широко применяются высокопрозрачные оптические кристаллы, например в качестве линз для фокусировки форсированного излучения, резонаторов мощных лазеров, защитных иллюминаторов, материалов для вытяжки ИК световодов и т.п. Важнейшей характеристикой подобных материалов является абсолютное значение натурального показателя поглощения оптического излучения , который , в свою очередь, определяет долю энергии, поглощенную в материале при прохождении через него мощного потока излучения. Эта характеристика позволяет прогнозировать лучевую прочность материалов, динамику их разогрева в процессе облучения, потери в линиях световодной связи и т.п.

Вихретокотепловой метод

Вихретокотепловой метод основан на радиоимпульсном возбуждении металлических объектов полем индуктора, приеме теплового отклика приповерхностным преобразователем вовремя и после теплового воздействия и анализе амплитудно-временной информации. Ход теплового процесса определяется теплофизическими и одновременно электромагнитными параметрами объекта, что позволяет в одном эксперименте проводить исследования как тепловыми, так и вихретоковыми методами. В частности, коэффициент температуропроводности чувствителен к химическому составу, тепловому старению, термообработке, размерам зерна сплавов. С помощью метода ВТТ возможна так же тепловая толщинометрия ферромагнитных и тонкостенных изделий, изделий с грубой поверхностью и др.

Теплографический ТНК композитов

Контроль тонкостенных оболочек из полимерных композиционных материалов, прочность которых существенно зависит от дефектов типа воздушных расслоений, "слипнутых" отслоений и т.д., эффективен с помощью комбинированного теплоголографического метода. Он заключается в нагреве(тепловом нагружении) изделия и совместной регистрации термограмм и голографических интерферограмм нагретой поверхности. При этом обнаружение дефектов производится по наличию аномалий интерференционных полос, а их протяженность и глубина залегания на основании анализа термограмм контролируемой зоны изделия при его нагреве галогенными лампами.

Способы контроля сварных конструкций
Дефекты сварных соединений
Сварочные материалы
Ультразвуковой контроль сварки
Технология термической обработки стали
Процессы сварки и резки
Неразрушающий контроль качества
контакты добавить оборудование регистрация полезные публикации услуги сайта каталог сайтов Каталог сварочного оборудования Рейтинг Сварка: сварочное оборудование сварочные электроды сварочная проволока ферросплавы
Каталог оборудования Каталог фирм Статьи Словарь терминов Видео Библиотека Галерея Рейтинг
Сварка, сварочное оборудование, сварочные материалы
Каталог электродов | Марочник сталей | Рейтинг сварки | Реклама
Добавить оборудование [?]
Добавить новость [?]
Добавить прайс-лист [?]
На главную

Написать письмо
Забыли пароль?
Регистрация [?]